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Abstract

Attributes are semantic visual properties shared by ob-
jects. They have been shown to improve object recogni-
tion and to enhance content-based image search. While
attributes are expected to cover multiple categories, e.g. a
dalmatian and a whale can both have “smooth skin”, we
find that the appearance of a single attribute varies quite
a bit across categories. Thus, an attribute model learned
on one category may not be usable on another category.
We show how to adapt attribute models towards new cate-
gories. We ensure that positive transfer can occur between
a source domain of categories and a novel target domain,
by learning in a feature subspace found by feature selec-
tion where the data distributions of the domains are similar.
We demonstrate that when data from the novel domain is
limited, regularizing attribute models for that novel domain
with models trained on an auxiliary domain (via Adaptive
SVM) improves the accuracy of attribute prediction.

1. Introduction
Attributes are semantic visual properties of the world

which, similarly to adjectives, describe concepts that mul-
tiple object categories share. For example, animals might
be “furry”, a person might be “smiling”, and a landscape
might be “natural”. Attributes have been successfully used
to provide a rich and meaningful representation for recogni-
tion [9, 20] and image search [19, 17]. Since attributes are
shared across categories, they are particularly useful when
data is scarce. This is because learning a model for one
attribute affects all the category models for objects that pos-
sess the attribute. Therefore, learning attribute models is a
good investment for object recognition in the case of limited
data [9, 18]. Further, attributes are useful since we can never
have exhaustive visual data when learning about the world,
yet when we encounter unfamiliar objects, it is useful to be
able to say something about them, even if our system does
not know their names.

One very appealing application of attributes is zero-shot
learning, where a computer vision system can learn to auto-
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Figure 1: Examples of large discrepancy in attribute appear-
ance between domains, and an overview of our approach.

matically categorize a new previously unseen class without
any training data, based on a textual attribute-based descrip-
tion. The system requires models for the attributes involved
in the description, but they can be learned on data from other
classes. For example, we can learn to recognize a polar bear
by knowing that it is “white”, “furry”, “bulbous” etc., after
having learned models for these attributes from images of
other animals [20]. Thus, zero-shot learning allows a vision
system to generalize beyond what it has seen.

In order for applications such as zero-shot recognition
and attribute-based search to work, an attribute must have
the same semantic meaning and representation across dif-
ferent categories. In other words, we should be able to learn
“white”, “furry” and “bulbous” on one set of classes, and
apply the learned models to another set with accuracy sim-
ilar to what it would be on the first set. Otherwise, the
attribute models we learn do not actually capture the con-



cept behind the attribute name that humans associate with
the name. For example, a model for “furry” might cap-
ture a concept that is just correlated with the attribute in
question, such as the image background. This would limit
the success of zero-shot learning since the latter depends on
human-provided textual descriptions.

Consider the images shown in Figure 1. The figure
shows positive images for the “bulbous” attribute for two
domains of animals, ungulates and carnivores. The ungu-
late “bulbous” images look quite different than the carni-
vore ones. The right-hand side shows animals with black
and white patches, as well as furry ones. Therefore, even
to a human it may not be clear what the left and right-hand
side have in common. The same holds for the “patches”
attribute: the patches on pandas and dalmatians look very
different from the giraffe patches. This variation indicates
we cannot expect an attribute model learned on one domain
of classes to perform well on another. Yet if we could effi-
ciently adapt existing attribute models to new potentially
very different domains, we can successfully and quickly
learn attributes across different domains.

Thus, domain adaptation is an important aid in attribute
learning. Yet attribute adaptation has largely been ignored
in the vision community. The few exceptions rely on the
existence of a generic model which is not be available in our
case [16], do not consider the case of zero overlap between
the categories in the source and target domains [7], or use
a complex method which we find does not perform well in
experiments [12].

We study the adaptability of attributes across domains,
and propose a method for efficient adaptation. An overview
of the method is shown in the lower part of Figure 1. We
wish to learn a model of an attribute for a novel domain
(called the “target” domain) with limited data from that do-
main, and a model trained on an existing domain (called
“source” or “auxiliary”). For example, we can learn a model
of “bulbous” on sea animals with (1) limited images of sea
animals and (2) a “bulbous” model on land animals. We
develop techniques for making adaptation more feasible, by
selecting features that are both similar across domains.

Through experiments, we found that adapting a model
trained on the source domain to the target domain through
Adaptive SVM [31] has an advantage over directly applying
a model trained only on the source domain. Feature selec-
tion helps improve the performance further so that it outper-
forms a model trained only on the target domain when the
training data is scarce.

2. Related Work
Attributes and attribute learning. Attributes [20, 9, 4,
24] are semantic visual properties of objects, e.g. “furry”,
“shiny”, “wooden”, etc. Attributes allow recognition to go
beyond labeling to describing objects. For example, when

a robot encounters a new object, even if it cannot put the
correct label on it, it can say “It looks like an airplane, but
I don’t see the wing,” as suggested in [9]. Attributes also
enable recognition of new objects from a textual descrip-
tion [20, 9, 22, 14]. Some applications of attributes have
been for search [19, 17], actively learning object categories
[23, 18], recognition of scenes [24] and unusual objects
[26]. Attributes allow more efficient learning of category
models because they are shared across categories, so mul-
tiple categories are impacted when an attribute models is
learned [18].

In most of the above works (except those which perform
zero-shot recognition such as [9, 20, 22, 14]), attribute mod-
els are learned and used on the same dataset, usually using
data from all available object classes. However, since at-
tributes are semantic properties, they should be learnable
across object category boundaries. If a computer vision sys-
tem truly understood the meaning of “furry”, we should be
able to learn a model of “furry” on one domain of objects,
and apply it on another. Farhadi et al. [9] and Jayaraman et
al. [14] show how to learn more accurate models that avoid
learning data artifacts that are correlated with the attribute,
in order to improve the accuracy of attribute models when
a model is applied on a different dataset. In contrast, we
examine how we can adapt attribute models trained on one
domain to successfully work on another.

Domain adaptation and transfer learning. Transfer
learning [2, 28] involves applying an existing model in the
learning of a related category. For instance, given a model
of “motorcycle” and just a small number of images for
“bicycle”, we can learn about as good a model as with a
large number of images for “bicycle” [2]. Similarly, do-
main adaptation [31, 11, 10, 13, 1, 32, 5, 30] allows one to
learn an accurate model of a concept adapted to the novel
target domain, in cases where simply applying the model
learned on the source domain does not suffice. For ex-
ample, [10] consider accurately recognizing monitors “in
the wild”, after learning a model for “monitor” from clean
product images on Amazon.com. Supervised domain adap-
tation transforms an existing model using a small number
of labeled examples from the target category. Unsupervised
adaptation uses unlabeled examples from the target domain
and finds a feature space where the two domains are similar,
then learns a model in that space.

Transfer learning and adaptation aim to optimize how
we use small amounts of data in new domains or of new
categories. This aim of making smart use of limited data
is in the same vein as efficient attribute-based object cate-
gory learning. It seems natural to combine these methods,
yet we are aware of only three works that study attribute
adaptation. One is the attribute personalization approach of
Kovashka and Grauman [16] which learns a generic model
of an attribute from the crowd and adapts it towards indi-



vidual search users. In other words, they learn a “least com-
mon denominator” model for an attribute such as “formal
shoes”, and adapt it towards each particular user’s notion of
this concept. In contrast to [16], our approach does not as-
sume a generic model is available, so instead of producing
a specialized model from an “umbrella” model, it takes one
model and adapts it towards a category that is potentially
visually very different.

Another relevant work is Han et al.’s Image Attribute
Adaptation (IAA) approach [12]. They propose to learn a
shared multi-kernel representation for the source and target
domains by minimizing their discrepancy. Assuming im-
ages close in the feature space possess similar attributes,
they use local linear regression to predict the attributes of
unlabeled training images in the target domain. Finally,
multiple kernel regression with an `2,p-norm loss function
is learned to predict the attributes of testing images. While
IAA tries to bring closer the images in the two domains
by learning a multi-kernel representation, our method tries
to bring them closer through feature selection. IAA learns
multiple attributes together, but our method learns them sep-
arately. After mapping the original feature space to the
multi-kernel feature space, IAA learns one model for the
source and target domain. In contrast, our method learns
two different models for the source and target domain while
keeping them as close as possible through regularization.
For practical use, IAA is very complex: besides different
choices of base kernels that can be made, there are four
trade-off parameters for the objective function and one pa-
rameter for the norm. In contrast, our approach is signif-
icantly simpler (only one parameter needs to be set when
using a linear kernel). Further, as we show in experiments,
our method produces better results.

In a recent work, Chen et al. [7] also adapt attributes
across domains. However, the different domains in their
case are clothing items shown in clean product images as
opposed to a less restricted street environment. Yet in [7],
the categories of clothing items are still the same (e.g.,
“plaid shirt”). In contrast, we consider the case of dis-
joint categories between the source and target domains. The
problem is more challenging because when we learn an at-
tribute on a category such as “bear” and try to predict it on
“dolphin”, the visual appearance shift is much larger than in
plaid shirts on Amazon as opposed to plaid shirts on Face-
book. Further, [7] use an expensive deep learning formula-
tion, and we use simple linear kernel adaptation.

Feature selection. Researchers have studied how to en-
sure that the features used for various vision tasks are in-
formative [3, 33, 21]. [25, 8] show how feature selection
improves recognition performance. [27, 29, 6] exploit fea-
ture selection for domain adaptation.

In contrast to prior work, our approach uses a much sim-
pler and less expensive criterion for feature selection. How-

ever, any method that finds a feature subspace where the two
domains are close can be used in our formulation. Our con-
tribution is the integration of feature selection in an adaptive
SVM, for the problem of learning attributes across domains.
We show that our adaptation method predicts attributes on
novel domains more accurately than alternative methods.

3. Approach
We assume we are given two domains of the same high-

level concept. For example, this could be male and female
humans, ungulates and carnivores, etc. In all cases, we learn
models for each attribute individually. We assume a sce-
nario where we are given a classifier for an attribute A and
domain S, and want to efficiently learn a classifier for do-
main T . This is useful because it matches a situation when
we have learned an attribute on some categories, and we
want to use this attribute model on a visually and semanti-
cally different set of categories. To adapt an existing classi-
fier, we will use the Adaptive SVM framework of [31], but
only using a subset of the features which we will select au-
tomatically. We provide details for both the adaptation and
feature selection next.

3.1. Adapting the classifier

In [31], the authors propose Adaptive SVM (A-SVM).
A-SVM is a modification of an SVM formulation that al-
lows one to learn a new classifier while regularizing with an
existing one.

Let xi denote the feature representation of image i and
yi denote its binary label (1 or -1) which says whether
this image contains the attribute of interest. Let DT =
{x1, y1}, . . . , {xNT

, yNT
} denote the data in the target

domain, which consists of NT samples. Let DS =
{xS

1 , y
S
1 }, . . . , {xS

NS
, ySNS

} denote the data in the source
domain, where NS is the number of samples. Also, let
fs(x) denote a model learned on the source domain. Let
f∆(x) = wT

∆x denote the “delta” or change function be-
tween the source model and its transformed version which
results from adapting it with the target data, so the adapted
classifier is f(x) = fs(x) + f∆(x), which can be learned
using the source classifier and data in the target domain, as:

min
w∆

1

2
‖w∆‖2 + C

NT∑
i=1

ξi (1)

subject to yifs(xi) + yiw
T
∆xi ≥ 1− ξi,

ξi ≥ 0, ∀i = 1, . . . , NT

Note that in this formulation, w∆ denotes the change of
the parameters, hence the deviation of the adapted model
from the source model. In other words, the new adapted
model is learned on the target domain, but it is encouraged
to stay close to the model for the source domain. This reg-
ularization with the source model is useful since the target



domain data is scarce and learning a model from this data
alone can be unreliable.

To learn fs(x) in the source domain, we use the standard
SVM formulation, which is similar to Eq. (1) but does not
take an existing model into account:

min
w

1

2
‖w‖2 + C

NS∑
i=1

ξi (2)

subject to yiw
TxS

i ≥ 1− ξi,
ξi ≥ 0, ∀i = 1, . . . , NS

We use the linear A-SVM implementation of [31], but a
kernelized version of A-SVM is also possible.

Yang et al. [31] show that A-SVM allows faster learning
of concepts for a new domain as compared to starting from
scratch or directly applying a classifier from the old domain.
We wish to determine whether this holds in the domain of
attributes, i.e., whether attributes are adaptable across do-
main boundaries. Note that the formulation in Equation
(1) makes the assumption that the two domains are simi-
lar enough that positive transfer can occur between them.
This assumption is valid in the case of learning TV-related
concepts such as “weather”, as in [31], but it may not hold
in the case of learning attributes across different types of
animals. Therefore, we need to ensure that positive transfer
can occur between domains. We discuss this next.

3.2. Feature selection

In general, different domains are not guaranteed to be
similar. If they are too dissimilar, regularizing the classi-
fier for one domain with that learned on another would be
counter-productive. To overcome this problem, we wish to
bring the source and target domains closer, by performing a
form of feature selection.

We only use those features for learning the new classifier
that are similar across domains. We do this separately for
those images in the source and target domains that contain
attribute A, namely D+

S and D+
T , and for the images that do

not contain them, D−S and D−T . More formally, let j denote
a feature dimension and xi,j denote the j-th component of
xi. Let

s+
j =

|µ(j,D+
S )− µ(j,D

+
T )|2

σ2(j,D+
S ) + σ2(j,D+

T )
(3)

s−j =
|µ(j,D−S )− µ(j,D

−
T )|2

σ2(j,D−S ) + σ2(j,D−T )

where

µ(j,D+
S ) =

1

|D+
S |

∑
xi∈D+

S

xi,j

σ2(j,D+
S ) =

1

|D+
S |

∑
xi∈D+

S

(xi,j − µ(j,D+
S ))

2

and other values of µ and σ2 are defined similarly.
We rank all feature dimensions j with respect to their

scores s+
j and s−j separately, in ascending order, average

the ranks, and pick the K = 500 feature dimensions with
smallest ranks. Thus, we are picking the feature dimensions
that are most similar between the two domains.

Then xi in Eq. (1) and (2) becomes

(xi,l(1), xi,l(2), . . . , xi,l(K))

where l(r), r = 1, . . . ,K are the original indices of the K
feature dimensions most similar across the two domains. In
other words, the adapted model is now trained with lower-
dimensional target data and regularized with a source model
trained on lower-dimensional source data.

In addition to the feature spaces being similar, we also
explore another useful criterion for feature selection: fea-
ture discriminativity. We want to pick features that are dis-
criminative in both the source and target domains, hence
differ between the positive and negative data:

dSj = −
|µ(j,D+

S )− µ(j,D
−
S )|2

σ2(j,D+
S ) + σ2(j,D−S )

(4)

dTj = −
|µ(j,D+

T )− µ(j,D
−
T )|2

σ2(j,D+
T ) + σ2(j,D−T )

We can use the feature similarity and discriminativity
criteria separately, or we can combine the two criteria and
pick those features for which the average rank computed
from the ranks based on s+

j , s−j , dSj and dTj is smallest.
In the next section, we show how these feature selection

criteria help attribute adaptation succeed.

4. Experimental Validation
We first describe the data and features we use and the

baselines against which we compare our approach. We then
present our experimental findings.

4.1. Dataset

We use the Animals with Attributes dataset of Lampert et
al. [20]. Within it, we select two domains, which constitute
two animal orders: Artiodactyla (ungulates or hoofed ani-
mals) and Carnivora (carnivores). The former consists of
10 species, while the latter consists of 21 species. For sam-
pling convenience we omit the last species, raccoon, from
the latter. We treat the former as the source and the latter as
the target domain.

We randomly sample NS = 1000 images from the
source domain and NT = {20, 40, 60, 80, 100} images
from the target domain for training, and another 1000 im-
ages from the target domain for testing. The same number
of images are sampled from each species. We repeat each
experiment 10 times with different training and testing sets,
and report the average results over all trials.



Attribute Source Target
black 0.5 0.65
white 0.4 0.5
brown 0.7 0.7
gray 0.3 0.4
patches 0.4 0.3
spots 0.4 0.25
bulbous 0.7 0.4
lean 0.3 0.65
smelly 0.7 0.4
muscle 0.7 0.55
forager 0.5 0.5
mountains 0.4 0.25
domestic 0.4 0.4

Table 1: Attributes and their distributions on the source and
target domains. The value shown denotes what fraction of
species in the corresponding domain contain the attribute.

To make experiments more meaningful, we only conduct
experiments using the 13 attributes that occur in at least 25
percent and no more than 75 percent of the species in both
domains. These attributes are shown in Table 1.

4.2. Features

We use the DECAF features provided with the dataset re-
leased by [20]. These features correspond to the fc7 layer of
CaffeNet trained on images from the ImageNet 2012 chal-
lenge. These features can be extracted on novel images us-
ing the Caffe package from Berkeley [15]. Each instance is
a 4096-dimensional vector with a unit `2-norm.

4.3. Baselines

We compare our approach to three baselines:

• SOURCE, a model trained with 1000 data points on
the source domain using the original 4096-dimensional
CNN features;

• TARGET, trained using between 20 and 100 data
points on the target domain using the original 4096-
dimensional CNN features; and

• IAA, the attribute adaptation approach of [12], a mul-
tiple kernel model trained with data points on both the
source and target domain using the 4096-dimensional
CNN features.

We examine several versions of our method:

• ADAPT, a 4096-dimensional model which directly ap-
plies A-SVM as in Section 3.1, without applying any
feature selection;

• ADAPT-SIMI, a 500-dimensional model which applies
feature selection as in Eq. (3);
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Figure 2: Attribute prediction accuracy averaged over all 13
attributes.

• ADAPT-DISC, a 500-dimensional model which applies
feature selection as in Eq. (4);

• ADAPT-BOTH, a 500-dimensional model which ap-
plies both similarity and discriminativity for feature
selection, as in Eq. (3) and (4); and

• ADAPT-RAND, a 500-dimensional model which se-
lects features randomly.

The parameters C in our models are tuned in
the range {2−15, 2−12, . . . , 1, . . . , 212, 215} with five-fold
cross-validation. For IAA, we tried different parameter
settings as in [12]: α and µ were varied in the range
{10−4, 10−2, 1, 102, 104}; and p in {0.5, 1.0, 1.5}. For IAA
only, instead of the time-consuming cross-validation, we re-
port the best results we can get among all the parameter set-
tings considered in the original paper. Thus, our results on
IAA are generous to this baseline.

4.4. Results

Figure 2 shows the attribute prediction performance of
the linear SVM methods (all methods in Section 4.3 except
IAA), averaged over all 13 attributes. Again, all of these
methods are tested on data from the target domain. We ob-
serve that the model trained on source data performs quite
poorly, which indicates that the source and target domains
are quite distinct. We also observe that the naive adapta-
tion method (ADAPT) fails to outperform a method trained
with just a small number of data points on the target data
(TARGET). In other words, the source and target domains
are so different that on average, with straight-forward adap-
tation techniques, there is no benefit of using information
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Figure 3: Attribute prediction results for a subset of the attributes.



Attribute SOURCE TARGET ADAPT-SIMI

black 52.0 65.1 65.4
brown 63.0 70.2 71.4

bulbous 55.3 61.7 66.3
mountains 64.9 76.3 74.1

muscle 62.1 59.4 67.0
smelly 38.7 59.6 54.5
white 61.4 64.9 68.0

Table 2: Accuracy on the attributes not shown in Figure 3,
using 20 training samples on the target domain.

from the source domain for regularization.
The feature selection methods ADAPT-DISC and

ADAPT-SIMI and their combination ADAPT-BOTH all im-
prove upon the naive adaptation method (ADAPT) when a
small amount of data if available. However, the ADAPT-
SIMI method is best. This indicates that the similarity of
feature spaces between the two domains is more impor-
tant for adaptation than feature discriminativity. As a sanity
check, the 500-dimensional model which uses random fea-
ture selection (ADAPT-RAND) fails to improve upon direct
adaptation, except at 20 training instances.

We developed the attribute adaptation method for situ-
ations when data from the target domain is scarce. There-
fore, we are most interested in the left-most part of Figure 2,
i.e. the case when only 20 data samples from the target do-
main are available for training. ADAPT-SIMI, the method
which selects features such that they are similar between
the two domains, achieves the best results when little tar-
get data is available, and it outperforms the model trained
on target data only (TARGET). When more data becomes
available, feature discriminativity (ADAPT-DISC) and hav-
ing data from the domain of interest (TARGET) become
more important. In other words, when sufficient data is
available, one should directly learn on data from the domain
of interest, but when data from the target domain is limited,
the best strategy is to adapt a source model, after selecting
features that are common between the two domains.

In Figure 3, we include a representative subset of the
methods’ performance on individual attributes. We have
several findings.

• SOURCE performs worst in almost all cases, confirm-
ing that there is a large discrepancy between the source
and target domains.

• For some attributes, e.g. “forager”, TARGET performs
the best even when the training data set is small. The
reason might be that the source and target domains are
so different that it is almost impossible to get any trans-
ferable knowledge from the source domain. For other
attributes, e.g. “gray”, even at 60 target data points it is
preferable to adapt from a source domain.
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Figure 4: Comparison to another attribute adaptation
method, [12].

• ADAPT-DISC outperforms ADAPT in most cases,
which in turn outperforms ADAPT-RAND, meaning
that feature selection helps.

• ADAPT-SIMI’s performance increases slower than
ADAPT-DISC’s as the target domain data size in-
creases, because the former learns the common part
between the two domains, and adding more target do-
main data mostly provides more variations in the target
domain, leaving the common part unchanged.

Due to the space limitation, we only show the more in-
teresting per-attribute curves in Figure 3. The performance
of ADAPT-SIMI, TARGET and SOURCE on the remaining
attributes is shown in Table 2. We conclude that for nine of
the 13 attributes, ADAPT-SIMI outperforms TARGET when
little data is available. The three where we underperform it
are all attributes that are not visual (“forager”, “mountains”,
“smelly”) so it is hard to learn any model for those.

Figure 4 shows the comparison of our approach ADAPT-
SIMI to the IAA approach of [12], averaged over all at-
tributes. We see that our method learns significantly more
accurate attribute models than IAA.

Considering the large amount of attributes we can learn
in practice, it is important to be able to learn from a small
labeled dataset. On a dataset of 100 attributes, getting 100
labels per attribute using a majority vote over 5 labels ac-
quired on MTurk for 1 cent per label would cost $500.
Based on the trend of the curves in all figures, the smaller
the training sample, the larger our method’s relative gain
over other methods, demonstrating the practicality of our
method in common situations of limited data.



5. Conclusion
We presented a method for adapting an attribute model

learned on one domain, e.g. land animals, to be used on an-
other domain, e.g. sea animals. Our method helps positive
transfer between the source and target domains by select-
ing features that are similar between the two domains, thus
finding a feature subspace where the two domains are close.
We demonstrate that when the data in the domain of inter-
est is scarce, and an attribute model on a different domain
is available, it is best to utilize that model and adapt it for
the new domain. In addition, we showed that our method
achieves more accurate results than an alternative attribute
adaptation method.

As future work, we plan to study how we can best visu-
alize the attribute models we have learned. Further, we will
consider how we can transfer knowledge between different
attributes, including ones which may not seem to have a se-
mantic connection.
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