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Abstract

Real-world event sequences consist of complex mixtures of different types of
events occurring in time. An event may depend on past events of the same type,
as well as, the other types. Point processes define a general class of models for
event sequences. “Regressive point processes” refer to point processes that directly
model the dependency between an event and any past event, an example of which
is a Hawkes process. In this work, we propose and develop a new nonparametric
regressive point process model based on Gaussian processes. We show that our
model can represent better many commonly observed real-world event sequences
and capture the dependencies between events that are difficult to model using
existing nonparametric Hawkes process variants. We demonstrate the improved
predictive performance of our model against state-of-the-art baselines on multiple
synthetic and real-world datasets.

1 Introduction

Event sequences consist of timestamps of events occurring over a period of time. They arise commonly
in our everyday life. Examples are spread of news in a social network, buying and selling actions in
a stock market, occurrences of earthquakes in a region, administration of medications for a patient,
and many others. Because of their wide applicability, event sequences and their models have become
popular in machine learning research.

Point processes [Daley and Vere-Jones, 2003, 2007] can model event sequences by representing
events as points in the one-dimensional space: time. In general, a point process defines a probabilistic
distribution of points in a space. For a (temporal) point process, the distribution is uniquely determined
by its intensity function, which defines the rate of event occurring at any instant.

Two main types of point process models have been developed independently over years. One type is
what we call “regressive point processes”, where the dependencies of the intensity function on the
past events are directly modeled. Hawkes processes [Hawkes, 1971] are the most studied and used
class of regressive point processes (e.g., [Zhou et al., 2013a],[Zhou et al., 2013b],[Bacry and Muzy,
2014],[Lee et al., 2016],[Wang et al., 2016],[Xu et al., 2016],[Eichler et al., 2017]). A benefit of the
regressive point processes is that they are easy to apply and interpret. They can be learned on a set
of sequences and then applied on another unseen set of sequences. Since the influence of each past
event on the intensity is explicitly modeled, it is easy to see how different types of events influence
each other over time.

Another type is what we call “latent-state point processes”, where the dependencies of the intensity
on the past events are indirectly modeled through a latent state. Based on the past latent state, we can
infer the future latent state and thereby predict future events. The most studied class of latent-state
point processes are Gaussian-process-modulated point processes (e.g., [Adams et al., 2009],[Lasko,
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2014],[Rao and Teh, 2011],[Gunter et al., 2014],[Lloyd et al., 2015],[Lloyd et al., 2016],[Ding et al.,
2018],[Kim, 2018]). They use some transformation of a Gaussian process (GP) as the prior for the
intensity function, which provides a probabilistic distribution over possible intensity functions and
acts as the latent state. Then the posterior of the intensity function can be inferred from the data. The
main benefit of GP-modulated point processes is that they provide a principled way to flexibly model
the intensity functions. However, a significant drawback is that they are harder to apply, compared
with Hawkes processes, due to the need of inferring a separate latent state for each sequence. To
make inference on any new sequence, long enough history of the sequence must be available. It is
impossible to learn a model from a set of sequences and apply it to other unseen sequences (i.e. cold
start).

In this work, we propose a new nonparametric model, GP regressive point process (GPRPP), com-
bining the advantages of the above two models: the flexibility of GP-modulated point processes
and the applicability of Hawkes processes. (A discussion of related work is in the supplementary
material.) Similar to Hawkes processes, our model directly captures the dependencies of the intensity
function on the past events. However, unlike Hawkes processes, the dependencies are modeled
nonparametrically through a GP. Meanwhile, different from GP-modulated point processes, the input
of our GP is not defined by the “absolute” time relative to each sequence, but by the collection of
“relative” times from past events of different types. This defines a latent state independent of specific
sequences, and therefore can be learned from and applied to different sequences. Figure 1 illustrates
the differences between GPRPP and the previous models.

To better model the dependencies of the intensity function on the past events, we propose a conditional
GP model for GPRPP. It relies on a set of points introduced in the input space of the GP to capture
the dependencies independent of specific sequences. These points, although bearing a similarity to
the inducing points in sparse GPs [Quiñonero-Candela and Rasmussen, 2005, Titsias, 2009], function
quite differently, because instead of marginalizing them out, we condition on them for inference.

(a) Hawkes process (b) GP-modulated point process (c) GP regressive point process

Figure 1: Illustrations of different point process models. The first three rows are a multivariate event
sequence consisting of events (stems) of three types (u) on the timeline. The vertical line t marks the
current time. The last row is the estimated conditional intensity function (CIF) λ3(·) for event type
u = 3. (a) In a Hawkes process, the CIF depends on the past events through the triggering kernels
φuiuj

(Eq. 1). (b) In a GP-modulated point process, the entire (transformed) CIF on the specific
sequence is a function with a GP prior. (c) In a GPRPP, the (transformed) CIF depends on the past
events through a function with a GP prior.

2 Preliminary: point processes

The training data consist of multiple sequences D = {yc}|D|c=1. Each yc is a sequence of (time,
label) pairs yc = {(ti, ui)}|yc|i=1, representing the time and the type of each event, where ti ∈ R≥0
and ui = 1, . . . , U . A (temporal) point process has a conditional intensity function (CIF) λ(t) =

limdt→0+
E[N([t,t+dt))|Ht]

dt as the instantaneous rate of events at time t given the historyHt up to t,
where N(·) counts the number of events in an interval. For example, for a Hawkes process, the CIF
of event type ui is defined as

λui
(t) = µui

+
∑
tj<t

φuiuj
(t− tj) (1)

where φuiuj
is a function of time that characterizes the influence of past events of type uj on type ui.

It is called a triggering kernel in previous works. Meanwhile, µui
defines the baseline intensity.
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Given the CIF, the probability density of the data D is

p(D) =

|D|∏
c=1

p(yc) =

|D|∏
c=1

|yc|∏
i=1

λui(ti) exp

(
−
∫ T c

tc0

U∑
u=1

λu(t)dt

)
(2)

where tc0 and T c are the start and end time of yc. Without loss of generality, we assume tc0 = 0 from
now on. We note that the density of the data factorizes over the individual sequences yc (Eq. 2), while
the density of each sequence factorizes over the event types (Eq. 3):

p(yc) =

U∏
u=1

|yc|∏
i=1

λu(ti)
δ(ui,u) exp

(
−
∫ T c

tc0

λu(t)dt

) ,
U∏
u=1

pu(yc) (3)

where δ(x, y) = 1 when x = y, and 0 otherwise. In this way, a point process can be viewed as a set
of sub-models, one for each type of events. The total likelihood is the product of the likelihood of all
the sub-models. For a Hawkes process, each sub-model is similar to a regression model, where the
predictors are the elapsed times since the past events of all types, transformed through the triggering
kernels.

3 GP regressive point processes

Inspired by the regressive view of Hawkes processes, we propose a new model based on Gaussian
processes (GPs). Since the density factorizes over sequences (Eq. 2), we describe the method for one
sequence yc in the following. To avoid cluttering, we use y to denote the sequence. Since the density
of each sequence factorizes over event types (Eq. 3), we describe the method for pũ(y) of one type
ũ (target type) and call the events of type ũ the target events. The same method can be repetitively
applied to all pu(y), u = 1, . . . , U . However, we stress that even for one target type ũ, pũ(y) can
depend on all types of events in the history through the CIF (Eq. 1 and 4).

In our model, for each target type ũ, the CIF λũ(t) is a transformation of a function f drawn from
a GP with mean µ and covariance function K, f ∼ GP(µ,K). We note that f , µ and K can be
different for λu(t) of a different type u. The input of f consists of the elapsed times since the last Q
events of all the types. That is, f : X → R, where X ⊆ RD≥0, D = U ×Q, and U is the size of the
label set. To convert it to a valid CIF, we use the square transformation

λũ(t) = f(x(t))2 = f(t− s11(t), . . . , t− sQU (t))2 (4)

where squ(t) is the time of the q-th (from last) event of type u before time t, which could be undefined
when no such event exists. The input of the GP is x(t) = (t − squ(t))U,Qu=1,q=1 ∈ X . That is, x
depends on the current time t and the last Q events of all types. The d-th dimension of x(t) is
xd(t) = t− squ(t), corresponding to the time elapsed since the q-th (from last) event of type u. In
fact, Q does not have to be the same for each type u, i.e., we can have a different Qu for each type u,
but for notational simplicity, we use Q as if it were the same for all types. We note that the CIF of the
model directly depends on the past events and call the model a GP regressive point process (GPRPP).

The square transformation ensures nonnegativity of λ and enables closed-form evaluation of the
integrals in the likelihood as shown in the next section. It was originally proposed in [Lloyd et al.,
2015] for GP-modulated point processes for event sequences without types and then exploited in
later works (e.g, [Lloyd et al., 2016, Ding et al., 2018]). Compared with these works, where the GP
is a function of the single “absolute” time, in our model, the GP is a function of multiple “relative”
times since past events, which keeps changing as new events happen. This makes the inference much
harder, and new efficient algorithms to evaluate the integrals are developed in this work.

A key challenge in the model definition is to deal with undefined inputs. That is, inevitably at some
time t (e.g., at the very beginning of a sequence), the q-th (from last) event of type u may not exist.
Inspired by Hawkes processes, we come up with a novel kernel for the GP. We start by augmenting
each input xd(t) with an additional indicator I [xd(t)] to indicate whether the q-th (from last) event of
type u exists, i.e., whether squ(t) (correspondingly xd(t)) is defined. When squ(t) is undefined (there
are less than q events of type u in the past), we can set a dummy value for xd(t) (e.g., xd(t) =∞),
and I [xd(t)] = 0. Otherwise, xd(t) = t− squ(t) as before, and I [xd(t)] = 1. The dimensionality of
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the input essentially becomes 2D, but for notational simplicity, the indicators are implicit in x(t).
We define the kernel as

K(x(t), x′(t′)) =

D∑
d=1

I [xd(t)] I [x′d(t
′)]︸ ︷︷ ︸

K1

γd exp

(
− (xd(t)− x′d(t′))2

2αd

)
︸ ︷︷ ︸

K2

(5)

where γd, αd > 0. This is essentially a sum of D kernels, each of which is a product of two kernels
K1 and K2. K2 is the squared-exponential kernel on the value of xd(t). K1 is the inner product
on the indicator I [xd(t)]. We use the squared-exponential kernel, because it is widely used and has
closed-form evaluations of ψ and Ψ as shown in the next section, but it can be replaced by any kernel
with the latter property.
Remark 1. The two inputs of the kernel have different notations for x and t, indicating they can
come from different sequences at different absolute times. The kernel is actually isolated from the
absolute time t in the individual sequences, since it only depends on the value of x(·) at t. This is
very different from previous GP-based models (e.g., [Lloyd et al., 2015, 2016, Ding et al., 2018]),
where the inputs of the kernel always come from the same sequence, and the kernel depends on the
absolute time t in the sequence.

We make the following two assumptions to justify the definition of our model. A proof of Theorem 1
is in the supplementary material.
Assumption 1. For each type u of events, they have time-limited influences on the target events.
That is, there is a time limit, ∆Tu <∞, for each type u of event, such that for any event of type u
occurring at su, λũ(t) may depend on su only if 0 < t− su ≤ ∆Tu.
Assumption 2. For each type u of events, there exists Mu : R→ Z such that for any bounded time
interval I = [tbeg, tend), |I| = tend − tbeg <∞, the number of events Nu(I) ≤Mu(|I|) <∞.
Theorem 1. Given that assumption 1 and 2 hold, there exists Q <∞ such that λũ(t) depends on at
most the last Q events of any type at any time t.

4 Conditional GPRPP

In this section, we propose a conditional GP model for GPRPP and call it conditional GP regressive
point process (CGPRPP). The input of the GP is defined in the previous section and denoted as
x = x(t). When t is not important or clear from the context, we just denote the input as x.

Previously, different forms of sparse GPs based on inducing variables have been proposed to improve
the efficiency of GPs (e.g., [Quiñonero-Candela and Rasmussen, 2005, Titsias, 2009]). Typically, a
set of inducing points are introduced in the input space, and the inducing variables corresponding to
the points are marginalized out for learning and inference. Our idea is similar, but the difference is
that we condition on the inducing variables, which correspond to the values of the CIF given different
situations of the history. Therefore, we call these points conditional points.

Let Z ∈ XM be a sequence of M conditional points in the input space. We will explain how to
pick these points later. Given any input x ∈ X , the output of the GP is fx = f(x) ∈ R. Let
fZ = f(Z) ∈ RM . We define µx and µZ as the prior mean µ of the appropriate dimensions for x
and Z respectively. Let Kxx′ = K(x, x′) as defined in Eq. 5 for any inputs x and x′. If x and x′
are vectors, Kxx′ is the Gram matrix of the corresponding size. Then p(fZ) = N (µZ ,KZZ), and
p(fx|fZ) = N (µx|Z , σ

2
x|Z), where

µx|Z = µx +KxZK
−1
ZZ(fZ − µZ), σ2

x|Z = Kxx −KxZK
−1
ZZKZx (6)

From Eq. 3 and 4, the conditional density of the sequence y given fx is

ln pũ(y|fx) =

N∑
n=1

δ(un, ũ) ln f(x(tn))2 −
∫ T

0

f(x(t))2dt (7)

where N = |y| is the total number of all types of events in y.
Remark 2. It is worth noting that the conditional points inZ are independent of any specific sequence
y, since they are points in X .

4



Assuming we observe fZ = mZ , we can maximize the conditional density pũ(y|mZ) to learn the
hyper-parameters of the model:

ln pũ(y|mZ) = ln

∫
pũ(y|fx)p(fx|mZ)dfx

where p(fx|mZ) is defined by Eq. 6 with fZ = mZ . Because there is a correspondence between
f(x(t)) and the CIF λ(t), mZ essentially corresponds to different values of the CIF given different
situations of the history, determined by different z ∈ Z. Even given the exact same history, the CIF
may still be stochastic. Therefore, we allow noise in fZ , which is a generalization of the noiseless
case, so fZ = mZ + εZ , where p(εZ) = N (0, Sε). Then we can marginalize out εZ by integrating
w.r.t. p(εz). In the end, we maximize

ln pũ(y|mZ) = ln

∫∫
pũ(y|fx)p(fx|mZ , εZ)p(εZ)dfxdεZ = ln

∫
pũ(y|fx)p(fx|mZ)dfx (8)

where p(fx|mZ , εZ) is defined by Eq. 6, and

p(fx|mZ) =

∫
p(fx|mZ , εZ)p(εZ)dεZ = N (µ̃x, σ̃

2
x)

has a closed-form solution

µ̃x = µx +KxZK
−1
ZZ(mZ − µZ), σ̃2

x = Kxx −KxZK
−1
ZZKZx +KxZK

−1
ZZSεK

−1
ZZKZx. (9)

Remark 3. Because we condition on the pseudo-observations mZ , they can move freely when we
optimize Eq. 8, and their values are determined by fitting to the training data. Intuitively, they act as
key points of the CIF, which are supposed to capture the key information regarding the entire CIF.

Eq. 8 is hard to maximize directly. Instead, we derive a lower bound using Jensen’s inequality and
maximize the lower bound

ln

∫
pũ(y|fx)p(fx|mZ)dfx = lnE [pũ(y|fx)] ≥ E [ln pũ(y|fx)] (10)

where the expectation is w.r.t. p(fx|mZ), and from Eq. 7

E [ln pũ(y|fx)] =

N∑
n=1

δ(un, ũ)E
[
ln f(x(tn))2

]
−
N+1∑
n=1

∫ tn

tn−1

(
E [f(x(t))]

2
+ Var [f(x(t))]

)
dt

where we define t0 = 0 and tN+1 = T to be the start and end time of the sequence y.

From [Lloyd et al., 2015], we have

E
[
ln f(x(tn))2

]
= −G̃

(
− µ̃2

x

2σ̃2
x

)
+ ln

(
σ̃2
x

2

)
− C (11)

where C ≈ 0.57721566 is the Euler-Mascheroni constant, G̃ is defined via the confluent hypergeo-
metric function, and µ̃2

x = E [fx]
2
, σ̃2
x = Var [fx] can be computed as in Eq. 9.

Meanwhile,∫ tn

tn−1

E [fx]
2
dt =(tn − tn−1)µ2

x + 2µxψ
T
nK
−1
ZZ(mZ − µZ)

+ (mZ − µZ)TK−1ZZΨnK
−1
ZZ(mZ − µZ), (12)∫ tn

tn−1

Var [fx] dt =

D∑
d=1

∫ tn

tn−1

γdI [xd(t)] dt− Tr
(
K−1ZZΨn

)
+ Tr

(
K−1ZZSεK

−1
ZZΨn

)
. (13)

The definitions of ψ and Ψ are complex and included in the supplementary material. We note that the
computation of them is the bottleneck of the learning algorithm. A straightforward algorithm would
cost O(M2ND2). However, by merging computation related to the same event type, we can reduce
the complexity to O(M2NDQ). By setting each conditional point active on only one dimension,
we can reduce the complexity to O(M2NQ). If we further set Qũ > 1 only for the target type and
Qu = 1 for u 6= ũ, and assume NũQũ = O(N), where Nu is the number of points of type u, the
complexity can be reduced to O(M2N), which is what we adopt in the experiments. The details and
a proof are in the supplementary material.
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Learning We also add an independent noise kernel σ2I to the existing kernel (Eq. 5), which results
in a new term in the integral of the variance (Eq. 13). For learning the model, we maximize the lower
bound (Eq. 10) w.r.t. the set of hyper-parameters Θ = {µ, α, γ, σ,mZ , Sε}.
We assume that mZ provides sufficient information for the inference on the test data D∗.
Assumption 3. Conditioned on mZ , the test data D∗ is independent from the training data D,
p(D∗|D,mZ) = p(D∗|mZ).

Inference For inference of the test likelihood, to compare with non-Bayesian models, we use a
point estimate of the CIF, instead of model averaging. We use the optimal hyper-parameters Θ∗

learned from the training data D to estimate the mean CIF

λ∗ũ(t) = E [λũ(t)|Θ∗] = E [f(x(t))|Θ∗]2 + Var [f(x(t))|Θ∗] (14)

on the test data D∗, where the conditional mean and variance are defined in Eq. 9. Then we use the
mean CIF as our prediction to compute the likelihood p(D∗|λ∗) on the test data. For prediction of
event times, a sampling-based algorithm is derived in the supplementary material.

Conditional point placement Due to the high dimensionality of the input space of f , it is preferable
that the conditional points are placed beforehand and fixed in the learning procedure. Based on the
additive form of our kernel, we place the conditional points independently on each dimension. Each
conditional point will be active on only one dimension. In our experiments, for simplicity, we put the
conditional points regularly on each dimension within a region. If prior knowledge is available, it can
be used to determine the region; otherwise, we can use the following heuristics. The left bound of the
region is usually 0. The right bound can be set to the maximum (or some quantile) of the time span
between two (Q = 1) or more (Q > 1) consecutive points of the same type, since beyond that, the
conditional points will have limited effects.

5 Experiments

We compare our method with two state-of-the-art nonparametric Hawkes process variants. HP-GS
[Xu et al., 2016] is a nonparametric Hawkes process using a set of (Gaussian) basis functions to
approximate the triggering kernels, with sparse and group lasso regularization. For each experiment,
we tune its tuning parameters αS and αG in a wide range {10−2, 10−1, . . . , 104} as in the original
work using cross-validation based on the likelihood. In all the experiments, the bandwidth of the
Gaussian kernels is set to be optimal, that is the inverse of the cut-off frequency, based on the positions
of the kernels. The cut-off frequency ω0 = πM/T , where M is the number of kernels and T is the
right bound on the kernels. HP-LS [Eichler et al., 2017] is another nonparametric Hawkes process.
This method allows very flexible triggering kernels to be estimated by discretizing the kernels and
solving a least-square problem. Its parameters are set in accordance with the other methods for each
experiment. For our method, to improve efficiency, when we set Q > 1, we only set it for the target
type and keep Q = 1 for the others, as discussed in the supplementary material. We tie the parameters
for different dimensions q = 1, . . . , Q of the same type u.

5.1 Synthetic datasets

First we generate two synthetic datasets representing two distinctive types of event sequences using
the thinning algorithm [Ogata, 1981]. The first dataset is generated through a renewal process.
The baseline intensity is µ. When there is a new event, the intensity temporarily becomes A(1 −
sin(2πt/τ)), for a limited time t ∈ (0, τ) after the event. Each new event will reset the intensity. We
set µ = 0.1, A = 0.1, τ = 20.

The second dataset is generated through a Hawkes process. The baseline intensity is µ. The
triggering kernel is A exp(−(t − b)2/σ2), i.e., a Gaussian kernel. Different from the renewal
process, each new event will add a new Gaussian kernel on top of the existing intensity. We set
µ = 0.1, A = 0.1, b = 10, σ2 = 4.

For each dataset we generate 200 sequences of length of 100 time units each. Each dataset is split into
100 training sequences and 100 testing sequences. For the first dataset, we set Q = 1 and conditional
points at 0, 5, . . . , 15 for CGPRPP. For HP-GS, the kernels are also placed at 0, 5, . . . , 15. For HP-LS,
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we set h = 1, k = 20. For the second dataset, we use the same settings for all the methods, except
that we vary Q = 1, 5, 10, 20, 40 for CGPRPP to see the effect of adding more regression terms.

We visualize the influence from a past event of a specific type to the target events as the changes
in the intensity of the target type over time since that event. For Hawkes processes, it is similar to
plotting the triggering kernels, except that the triggering kernels are added on top of the baseline
intensity, so we can compare the intensity after an event with the baseline intensity. For CGPRPP, it
is equivalent to simulating an event at time 0 and plotting the changes in the intensity as time elapses.

The true influence functions are in the first column in Figure 2, followed by the inferred influence
functions for each method. For the first dataset, HP-GS cannot learn the influence function, because
its limitation in the dependencies of the CIF on the past events. Although the triggering kernels
are nonparametric, the baseline intensity and the triggering kernels are additive in the CIF. This
limitation is quite common in nonparametric Hawkes processes (e.g., [Zhang et al., 2018, Donnet
et al., 2018, Zhou et al., 2013b]). HP-LS is more flexible and learns a better influence function, but
the discretization tends to make the function noisy. CGPRPP almost completely recovers the true
influence function. We note that this influence represents an inhibition followed by an excitation,
which is common in practice such as neural spike trains [Eichler et al., 2017]. However, most Hawkes
process variants can only model either excitations or inhibitions, but not a mix of both at the same
time. In contrast, CGPRPP models the whole CIF as a nonparametric function of the past events and
therefore can model these more complex dependencies.

For the second dataset, HP-GS is a perfect match for the data, so unsurprisingly it recovers the
influence function very well. HP-LS also learns the influence reasonably well, although still suffering
from discretization. Interestingly, CGPRPP with Q = 40 (similar for Q = 10, 20) learns an influence
function very close to HP-GS.

The test log-likelihood on the synthetic datasets are shown in Table 1. CGPRPP performs the best on
the first dataset, while HP-GS and CGPRPP perform similarly on the second dataset, with CGPRPP
being marginally better. The likelihood results are concordant with how well the models recovered
the influence function. For the second dataset, we show the performance of CGPRPP selected with
the training likelihood (Q = 40). A comparison of GPRPP based on variational sparse GP [Lloyd
et al., 2015] and conditional GP, and the effect of varying Q on the performance of CGPRPP are in
the supplementary material.
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Figure 2: Influences from past events on the first (top) and second (bottom) synthetic datasets. Solid
lines are the CIFs after an event. Dashed lines are the baseline intensities. The ground truth is in the
first column, followed by the result of each method.
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Table 1: Test log-likelihood on synthetic
datasets.

Data HP-GS HP-LS CGPRPP

1 -2671 -2770 -2455
2 -4074 -4161 -4071

Table 2: Test log-likelihood on IPTV dataset.
Month HP-GS HP-LS CGPRPP

1 -1.477e+05 -1.779e+05 -1.479e+05
2 -1.509e+05 -1.825e+05 -1.502e+05
3 -1.608e+05 -1.928e+05 -1.608e+05

5.2 IPTV dataset

The IPTV dataset consists of TV viewing records of users over 11 months [Luo et al., 2014, Xu et al.,
2016]. Each sequence consists of times and types of the TV programs viewed by a user. Events in
this dataset are generally very bursty, i.e., one event tends to trigger a group of events of the same
type happening in a relatively short amount of time, while the distance between these burst groups
are relatively large. This is a distinctive characteristic of data generated by Hawkes processes, so we
expect the Hawkes process baselines to perform well. To the best of our knowledge, HP-GS has the
best performance on this dataset, but our goal is to confirm whether CGPRPP can also fit the data
well and achieve similar or better performance.

The data are extracted from THAP1 [Xu and Zha, 2017], which contain 302 users in total. For
efficiency, we randomly sample 200 users and use 100 for training and the others for testing. All
the models are trained on 1 month and tested on the following 3 months. More details are in the
supplementary material. For HP-GS, we put the kernels at every 20 minutes from 0 up to 24 hours,
since the length of most TV programs is about 20 to 40 minutes [Xu et al., 2016]. For HP-LS, we
train multiple models with h = 1.25, 5, 20 minutes and k = (24 ∗ 60 + 20)/h correspondingly.
For CGPRPP, the conditional points are also placed at every 20 minutes up to 24 hours. We set
Q = 5, 10, 20 and select Q based on the training likelihood.

Table 2 shows the test log-likelihood of the models on different months. This is the total log-likelihood
of all types of events. For HP-LS, we show the best test log-likelihood across different h and k. As
expected, HP-GS performs the best, confirming the bursty characteristic of the data. However, HP-LS
does not perform well. A problem of HP-LS is that the discretization tends to make the influence
function noisy and fail to generalize well. CGPRPP has a competitive performance close to HP-GS,
showing its capability to model bursty events.

5.3 MIMIC datasets

To show the flexibility of CGPRPP in modeling other complex event patterns than the bursty patterns
as in many previously used datasets similar to the IPTV dataset, we derive multiple new event
sequence datasets from MIMIC III [Johnson et al., 2016] consisting of lab tests ordered to patients in
a hospital. Lab orders tend to have more complex dependencies such as a complex mix of multiple
inhibitions and excitations over time (e.g., see Figure 3).

Since there are labs that tend to occur together, we group them into several lab classes. We extract
20 different datasets targeting the most frequent 20 classes. Each dataset consists of 10 different lab
classes, one of which is the target we try to predict, while the others are the predictors. We sample
200 admissions (sequences) randomly from each dataset, where 100 admissions are used for training
and the others for testing. More details are in the supplementary material.

For HP-GS, we put the kernels at 0, 8, . . . , 48 hours. We also test a different version of the method,
HP-GS-A, using the adaptive basis-function-selection algorithm in [Xu et al., 2016] to place the
kernels. For HP-LS, we train multiple models with h = 0.5, 2, 8 hours and k = (48 + 8)/h
correspondingly. For CGPRPP, the conditional points are also placed at 0, 8, . . . , 48 hours. We set
Q = 1, 10 and select Q based on the training likelihood. As a reference, we also test against a model
based on deep neural networks, the neural self-modulating multivariate point process (NSMMPP)
[Mei and Eisner, 2017]. The number of hidden units is selected from 64, 128, . . . , 1024 as in the
original work through a validation set (80/20 split from the full training set).

1https://github.com/HongtengXu/Hawkes-Process-Toolkit
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The test log-likelihood of the models is shown in Table 3. Each column is a different dataset with a
different target lab class. They are ordered from the most frequent (355) to the least frequent (18)
based on their occurrences. For HP-LS, we show the best test log-likelihood across different h and k
on each dataset. CGPRPP achieves the best or close to the best performance on all datasets except
class 550 and 18. On class 355, 60, 151, 113, and 140, CGPRPP outperforms the second best by a
large margin. In some cases (e.g., class 550) CGPRPP with a different Q actually has a much better
result, although not being selected. We also conducted time prediction experiments to predict the
time for each target event. The results also show the advantage of CGPRPP. The full likelihood and
time prediction results are in the supplementary material.

As an example, we plot the influence functions for class 355 from past events of the same type in
Figure 3. HP-GS learns a smooth influence function with excitations around 24 and 48 hours. This
corresponds to the fact that right after a lab being ordered, it might need to be repeated after one or
two days. In contrast, HP-LS (h = 0.5 with the best test likelihood) learns a much noisier pattern
due to discretization, which is harder to interpret. Compared with HP-GS, CGPRPP learns not only
similar excitations around 24 and 48 hours, but also a strong inhibition after each excitation, showing
a more flexible fit to the data.

Table 3: Test log-likelihood on MIMIC lab order datasets.
Dataset 355 60 3 95 368 354 151 550 113 140

HP-GS -3668 -4673 -3721 -4064 -3366 -4344 -3338 -1053 -4656 -3206
HP-GS-A -3947 -5051 -3733 -4390 -3711 -4792 -3574 -1064 -5049 -3475
HP-LS -6510 -7299 -5722 -5712 -5625 -7185 -5323 -1744 -7143 -4625
NSMMPP -3664 -4660 -3737 -3982 -3309 -4409 -3763 -1039 -4539 -3244
CGPRPP -3249 -4246 -3759 -3933 -3378 -4225 -3093 -1175 -4276 -2942

Dataset 294 17 150 80 394 1 53 7 8 18

HP-GS -1011 -3783 -3238 -3388 -3098 -3220 -1913 -2502 -1633 -1596
HP-GS-A -1054 -3807 -3537 -3772 -3251 -3291 -2138 -2533 -1667 -1678
HP-LS -1308 -5339 -4894 -5365 -4945 -3772 -2963 -3514 -3142 -3085
NSMMPP -941.2 -3758 -3377 -3903 -3268 -3228 -1916 -2626 -1786 -1532
CGPRPP -993.6 -3808 -3100 -3402 -3010 -3234 -1900 -2512 -1694 -1648
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Figure 3: Influences from past events of the same type as the target class 355 on the MIMIC dataset.

6 Conclusion

In this work, we proposed a new nonparametric method for modeling dependencies between events in
event sequences using Gaussian processes. Similar to Hawkes processes and different from previous
GP-modulated point processes, the proposed model can be learned on a sample of sequences and
then applied to other unseen sequences. However, we showed that the proposed model is more
flexible than state-of-the-art nonparametric Hawkes process variants. It can learn the dependencies
between events that are common in practice but difficult for the Hawkes process variants to represent,
e.g., a mix of inhibitions and excitations after an event. Our method showed competitive or better
performance on different datasets compared with the Hawkes process variants.
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