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• A time series is a sequence of data points indexed by (discrete) time.

• For example, a univariate time series
𝑦𝑡 ∈ ℝ: 𝑡 = 1, 2, … .

• Generally, the points are not independent of each other.



• Daily prices of stocks

• Monthly usage of electricity

• Daily temperature, humidity, ...

• Patient’s heart rate, blood pressure, ...

• Number of items sold every month

• Number of cars passed through a highway every hour

• …



• By monitoring some attribute of a target (e.g., the heart rate of a 
patient), we naturally get a time series.

• Analyzing the time series gives us insights about the target.

• In this work, we are interested in finding outliers in the time series in 
real time.



• Outliers are the points that do not follow the “pattern” of the 
majority of the data.

• More strictly, they are points that do not follow the probability 
distribution generating the majority of the data.

• Outliers provide useful insights, because they indicate anomaly or 
novelty, i.e., events requiring attention.
• extremely low volume on a highway → traffic accident

• unusually frequent access to a server → server being attacked

• increasing use of a rare word on a social network → new trending topic



• Detecting outliers in time series is challenging because of the 
nonstationarity (i.e., the distribution of the data changes over time)

• Specifically, the changes could be
• long-term changes

• periodic changes (a.k.a. seasonality)

• These hinder outlier detection, because they result in false positives 
and false negatives



• An extreme value in the past could be normal now

• A normal value in the past could be extreme now
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• By considering the context, some “outliers” become normal; some 
“normal” points become outliers.



• Existing work in outlier detection in time series usually assumes a 
model like autoregressive-moving-average (ARMA). (e.g., Tsay 1988; 
Yamanishi and Takeuchi 2002)

• These models cannot deal with nonstationary (seasonal) time series 
directly.

• A solution is to difference the time series, resulting in: autoregressive-
integrated-moving-average (ARIMA).

• We use it as a baseline in our experiments.
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• A time 𝑡 = 1, 2, … we sequentially receive the observations of the 
target time series

𝑦 = {𝑦𝑡 ∈ ℝ: 𝑡 = 1,2,… },

and the associated context variables 
𝑥 = 𝑥𝑡 ∈ ℝ𝑝: 𝑡 = 1,2, … .

• Our model consists of two layers:
• First layer uses a sliding window to compute a local score;

• Second layer combines the local score with the context variables to compute 
a global score (which is the final outlier score).



• First, we decompose the time series (within a sliding window) into 3 
components using a nonparametric decomposition algorithm called 
STL (Cleveland et al. 1990).



• Then, we compute a local deviation score 𝑧𝑡 =
𝑦𝑡
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• At each time 𝑡, given (𝑧𝑡 , 𝑥𝑡), where 𝑧𝑡 is the local score (first-layer 
output) and 𝑥𝑡 is the context variables, keep updating a Bayesian 
linear model 

𝑧𝑡|𝑤, 𝛽, 𝑥𝑡 ∼ 𝑁 𝑥𝑡
𝑇𝑤, 𝛽−1 ,

with the conjugate prior 
𝑤, 𝛽 ∼ 𝑁 𝑤 𝑚0, 𝛽

−1𝑆0 𝐺𝑎𝑚 𝛽 𝑎0, 𝑏0 .

• The model is built globally (aggregating all the information from the 
beginning), because
• contextual variables may correspond to rare events (e.g., holidays), but we 

need enough examples to have a good model;
• local scores are normalized locally, so no need to worry about nonstationarity.



• The final outlier score is calculated based on the marginal distribution 
of 𝑧𝑡 given 𝑥𝑡 and the history

𝑧𝑡|𝐷𝑡−1, 𝑥𝑡 ∼ 𝑆𝑡(𝑧𝑡|𝜇𝑡, 𝜎𝑡
2, 𝜈𝑡),

where 𝐷𝑡−1 = zu, xu u = 1, 2, … , 𝑡 − 1}.
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• Bike data consists of the time series (of length 733) that records the 
daily bike trip counts taken in San Francisco Bay Area through the bike 
share system from August 2013 to August 2015 .

• CDS data consists of daily rule firing counts of a clinical decision 
support (CDS) system in a large teaching hospital. (111 time series of 
length 1187)

• Traffic data consists of time series of vehicular traffic volume 
measurements collected by sensors placed on major highways. (2 
time series of length 365)



• Outliers are injected into the time series by randomly sampling a 
small proportion 𝑝 of points and changing their value by a specified 
size 𝛿 as

𝑦𝑖 = 𝑦𝑖 ⋅ 𝛿

for each 𝑦𝑖 in the sample.

• We vary 𝑝 and 𝛿 to see the effects.



• RND - detects outliers randomly.
• SARI - ARIMA(1,1,0) × (1,1,0)7, ARIMA with a weekly (7 day) period, 

(seasonal) differencing, and (seasonal) order-1 autoregressive term.
• SIMA - ARIMA(0,1,1) × (0,1,1)7, ARIMA with a weekly period, (seasonal) 

differencing, and (seasonal) order-1 moving-average term.
• SARIMA - ARIMA(1,1,1) × (1,1,1)7, ARIMA combining the above two.
• ND - our first-layer STL-based model, using absolute value of the output as 

outlier scores.
• TL1 - our two-layer model using holiday information as a contextual 

variable.
• TL2 - our two-layer model using holiday and additional information (if 

available) as context variables.



• Alert rate: the proportion of 
alerts raised out of all points.

• Precision: the proportion of 
true outliers out of alerts 
raised.

• We calculate AUC to compare 
the overall performance.

• Notice we focus on low-alert-
rate region for practicality.















• By comparing the AUC, we have the following observations:
• When the size of the outliers are small, all methods perform similarly to 

random.

• In the other cases, our two-layer method is almost always the best method.

• Even using only the first-layer can achieve similar or better results as the 
ARIMA-based methods.

• Using additional information (e.g., using weather besides holiday info) 
improves the performance of the two-layer method.
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• We have proposed a two-layer method to detect outliers in time 
series in real time.

• Our method takes account of the nonstationarity and the context of 
the data to detect outliers more accurately.

• Experiments on data sets from different domains have shown the 
advantages of our method.




