
Change-Point Detection for Monitoring Clinical

Decision Support Systems with a Multi-Process

Dynamic Linear Model

Siqi Liu∗, Adam Wright†, Dean F. Sittig‡ and Milos Hauskrecht∗

∗Department of Computer Science

University of Pittsburgh, Pittsburgh, Pennsylvania

Email: {siqiliu,milos}@cs.pitt.edu
†Brigham and Women’s Hospital and Harvard Medical School

Boston, Massachusetts

Email: awright@bwh.harvard.edu
‡School of Biomedical Informatics

University of Texas Health Science Center at Houston, Houston, Texas

Email: dean.f.sittig@uth.tmc.edu

Abstract—A clinical decision support system and its compo-
nents may malfunction due to different reasons. The objective of
this work is to develop computational methods that can help us to
monitor the system and assure its proper operation by promptly
detecting and analyzing changes in its behavior. We develop
a new change-point detection method using the Multi-Process
Dynamic Linear Model. The experiments on real and simulated
data show that our method outperforms existing change-point
detection methods, leading to higher accuracy and shorter delay
in the detection.

I. INTRODUCTION

A clinical decision support system (CDSS) is a complex

computerized system that assists a physician in managing

patients. Ideally, the system would function optimally all

the time. However, in reality the system may be prone to

various kinds of malfunctions affecting its performance [1].

Developing tools that are able to detect early and reliably its

malfunctions is critical to preserve its intended function and to

eliminate potential patient-related risks. In this work we study

the problem of detecting abnormal changes in the monitoring

and alerting component from its alert rule statistics.

The monitoring and alerting component identifies and alerts

on clinical and patient conditions in the regular clinical work-

flow. Typically it represents and executes expert-defined rules.

If the condition of the rule is satisfied, it sends a reminder

or alert to the physician. The proper execution of the rules

depends on multiple factors. First, they rely on the information

from patients’ electronic health record (EHR). As a result,

any change in how information is collected, stored, or coded

in the EHR may affect the rule. Second, the rule activation

and screening are typically triggered by other parts of the

CDSS, so any updates or changes made to other components

may affect the rule activation. Finally, the rules in the CDSS

are maintained by humans, and any error (unintentionally)

introduced in the rule logic may change the intended effect.

To detect changes of the monitoring and alerting component,

it would be ideal to have measurements on different com-

ponents of the CDSS. However, in reality, it is not feasible

to have all these data. Our aim is to detect changes based

solely on the firing counts of the rules in the system. The

firing counts can be subjected to different sources of variations.

Some of these sources may be identifiable. For example, the

different days of the week (e.g., Sunday vs. Monday) may

lead to different rule firing counts for the same rule due to the

differences in the weekly clinical workflow. But many other

possible sources are hard to identify. For example, changes

in the population of patients screened by the rules over time

may cause an increase or a decrease of the number of alerts.

It is a challenge to develop a method that can distinguish real

changes from the noise or a natural variation. Meanwhile, the

method should work in real-time, i.e. the detection is done

with a minimum delay after the change occurs.

To tackle these challenges, we study change-point detection

methods [2]–[4]. Traditional change-point detection methods

aim to detect changes by comparing the behavior or the statis-

tics before and after the change. Unfortunately, these methods

typically do not account for the different sources of variations,

and they also assume the analysis is retrospective (instead of

real-time), i.e. the changes are detected after all data have

been collected, which means the delay of the detection is not

a concern. Although nonparametric decomposition has been

used to account for seasonal variations [5], it does not have a

intuitive generative model for different behaviors of the data.

Therefore, we develop a new method using the Multi-Process

Dynamic Linear Model (MPDLM [6]) consisting of multiple

models, which not only account for seasonal variations, but

also represent different dynamics that may drive the observed

data and lead to normal or abnormal behaviors. We devise a

probabilistic score that can at any time step assess the chance

the time series has changed, which works in real-time and

does not rely on any future observations.

II. METHOD

The idea behind our approach is to represent the time series

with an accurate probabilistic model, and then use multiple

models to cover normal and abnormal behaviors. We start with

a brief review of the Dynamic Linear Model (DLM), which

is used to model the time series. Specifically, we introduce

a special form of DLM that allows us to model seasonal

(weekly) variations. Then, we show how to build DLMs

reflecting normal and abnormal behaviors and combine them

into the Multi-Process Dynamic Linear Model (MPDLM).

A. Dynamic Linear Model

The DLM models a sequence of real-valued observations

{yt : t = 1, 2, · · · } using a sequence of real-valued hidden

state vectors {xt : t = 1, 2, · · · } of dimension d. The dynamics

of the model is captured by:

yt = Fxt + v, v ∼ N(0, V),

xt = Gxt−1 + w, w ∼ N(0,W).
(1)

where G is a transition matrix that models the change in

the hidden state over time, and F is an emission matrix that

reflects the expression of observations yt given the current

xt. Both transition and emission are stochastic and corrupted

by a zero-mean Gaussian noise (w and v) with covariance

W and V . At the beginning (t = 0), we assume the hidden

state x0 ∼ N(m0, C0), where m0 and C0 is the mean and

covariance matrix of x0 respectively.

The DLM is very flexible in that it can define many different

behaviors of the time series including seasonality. We use

this property to represent weekly variations present in our

rule firing count time series. The best way to understand the

seasonal DLM is to break the hidden state (xt) into multiple

components: a baseline (ut) defining the mean, a slope (lt)
defining the trend of the mean, and a seasonal component

(st) defining the change in the mean for each phase (a day

in a week) of a seasonal cycle (a week). Let p denote the

period of the cycle. Then we can define a function of time

[t]p = (t + p − 1) mod p + 1 that maps the time to its

corresponding phase. We construct xt as a vector consists of

the components:

xt = (ut, lt, s
([t]p), s([t−1]p), . . . , s([t−p+2]p))T . (2)

and correspondingly the transition and emission matrices:

F =
[

1 0 1 0 0 . . . 0
]

1×d
,

G =























1 1 0 0 . . . 0 0
0 1 0 0 . . . 0 0
0 0 −1 −1 . . . −1 −1
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 0























d×d

.
(3)

B. Multi-Process Dynamic Linear Model

The seasonal DLM reflecting the weekly variation can be

used to model the rule firing counts (after transformation).

However, our main objective is to use the model for detecting

changes in the time series. We address the problem by defining

multiple DLMs representing normal and different abnormal

behaviors.

One way to define a collection of related DLMs is to use the

MPDLM [6]. Suppose we have a collection of DLMs. Each

DLM i has its own parameters (F (i), G(i), V (i),W (i)). In the

MPDLM, the individual DLMs may switch in time depending

on which model currently drives the time series. Let M
(i)
t be

a random variable indicating whether model i is driving the

time series at time t and generating yt, and Mt be a vector

composed of M
(i)
t for all i.

In this work, we use a combination of three DLMs: MS

(Model Stable), MAO (Model Additive Outlier), and MLS

(Model Level Shift). MS is a model for normal time series

behavior. MAO represents a spike behavior in which the most

recent observation is very different from previous normal

observations, and this difference is limited to just one point.

MLS represents a baseline-shift behavior in which the new

observations are very different from the previous observations,

and the changes persist for a longer time. We design these

models by varying their covariance matrices V and W . Take

MS as the reference model. MAO has a much higher value for

the covariance V , because a spike is treated as a temporary

noise in the observation and has no influence on the hidden

state of the time series. On the other hand, MLS has a much

higher value for the covariance W .

Now let Yt denote the time-series observations up to time

t, i.e. Yt = {yu : u = 1, 2, . . . , t}. Given the MPDLM and

its parameters, for each DLM i, we can calculate the prior

probability of i driving the time series right before observing

yt, p(M
(i)
t = 1|Yt−1). and the posterior probability after

observing yt, p(M
(i)
t = 1|Yt). The probabilities enable us

to infer if there was a switch in the current model and hence

a change in the time series. To keep the inference tractable,

we use Kalman filter with collapsing [6], [7].

Notice that if we observe an abnormal yt for the first

time, there is no way we can tell whether MAO or MLS has

generated it, because it could be explained by either the noise

in the observation or in the hidden state. Therefore, we wait

for the next observation yt+1 and calculate p(M
(i)
t = 1|Yt+1).

Specifically, p(M
(MLS)
t = 1|Yt+1) is the change-point score.

Figure 1 shows an example of applying the method to a real

time series. The top graph shows the observed rule firing

counts after a transformation (see Section III). The remaining

three graphs show the posterior probabilities of the three

models as indicated by the labels. Notice that there is a one-

time-unit delay in the probability outputs as described above.

Briefly most of the time, the time-series behavior is stable

and explained by the normal model (MS). This is captured

by high posterior probabilities recorded for MS. At the time,

where the observations deviate from the normal model, the

d
a
ta

p
(M

S
)

p
(M

A
O

)
p
(M

L
S

)

1010 1020 1030 1040 1050

0
5

10
15
20

0.00
0.25
0.50
0.75
1.00

0.0

0.2

0.4

0.0
0.2
0.4
0.6
0.8

time

Fig. 1: Applying the MPDLM method to a time series. The top

graph shows the observations. The remaining graphs show the

posterior probabilities of the three models (MS, MAO, MLS).

There is a one-time-unit delay for the probability outputs.

posterior probabilities of the other models (MAO or MLS)

go up. The posterior probabilities can be used to infer which

model is most likely to explain the observed deviation from

the normal model. MLS covers the change-point behavior we

are interested to detect.

C. Parameter Setting

The prior distribution of the models is a multinomial dis-

tribution. Unless we have information about the frequency of

different types of behaviors, we can just set a noninformative

prior, i.e. an equal probability for each model.

In each DLM, we only need to set V and W . However, it

is tricky to estimate them from the data, because 1) we do not

have labels for the data, and since the data could be a mix

of normal and abnormal data, the estimates could be biased;

2) even if we have labels, we may not have enough data to

estimate the variance for MAO and MLS. Therefore, we derive

some heuristics to set the parameters.

We use three tuning parameters to control the ratios of the

variance parameters: κ > 1, δ > 1, γ ∈ [0, 1]. Let V̂ be an

estimate of the variance for normal data (which we found is

not that important compared with the ratios). For MS, we set

V = V̂ and W = 0. For MAO, we set V = κV̂ and W =
0. For MLS, we set V = V̂ , w(u) = γδV̂ , w(l) = 0, and

w(i) = (1 − γ)δV̂ , ∀i, where w(u), w(l) and w(i) indicate

the components on the diagonal of W corresponding to u, l,
and s(i) in x (see Equation (2)). Intuitively, κ represents the

ratio of the size of a spike to a normal point. Without prior

information, setting δ = κ−1 is recommended, because MAO

and MLS would have the same variance for y. γ further breaks

down the variance in MLS into variance in the baseline and

the seasonal levels.

III. EXPERIMENTS

We use real data of rule firing counts from a large teaching

hospital collected over a period of approximately five years

[1]. There are 14 rules containing at least one known change-

point with a total of 22 change-points, which are used in the

real data experiment. To further evaluate the relation between

the performance of the method and the properties of the

change, we create simulated data by first picking 4 rules that

do not contain any change-point, then randomly sampling 10

segments with length 240 per rule, and finally simulating a

change in the middle. We simulate the change at time c in

time series y by changing the values as yi = λyi, i ≥ c.
In different experiments, we set λ to 2/1, 3/2, 6/5, 1/2, 2/3,

and 5/6 respectively, to cover both increasing and decreasing

changes in different sizes. The final values yi are rounded,

so they are still nonnegative integers. We use multiplicative

instead of additive changes, because the data are counts and

have heteroscedasticity (variance changes for different means).

We compare our method (denoted as DLM) with the fol-

lowing change-point detection methods:

• RND: a baseline that gives uniformly sampled scores.

• SCP: a method detecting change-points for data with

Gaussian distributions [4], [8].

• MW: a method based on Mann-Whitney nonparametric

statistics [3].

• Pois: a method based on the likelihood ratio test [9]

assuming the data follow Poisson distributions.

A sliding window of size 14 is used for all these methods to

take care of the nonstationarity of the data and control the com-

putational cost in real-time detection. Since the data are counts

and have heteroscedasticity, we use a square-root transforma-

tion (
√
y + 0.5) to stabilize the variance except for MW and

Pois [10]. We set the prior distribution of x0 to N(0, 106I),
where I is the identity matrix, κ = 100, δ = κ− 1, γ = 0.99,

and V̂ = 1 for our model. We also tried to estimate V̂ , but

the performance was slightly worse in these experiments. The

reason, we think, is that the ratios between the variances in

different models matters more than the values of the variances.

Meanwhile, accurately estimating the variances from data of

so many variations is quite challenging.

We use AMOC curves [11] to evaluate the performance.

Usually, a delay in time is allowed in the change-point detec-

tion. We set the maximum acceptable delay to 13, according

to the sliding window size 14. On the other hand, some

normal data points might be falsely classified as change-

points, i.e. false positives, and the false positive rate (FPR)

is the proportion of the false positives out of the total of the

negatives. When varying the threshold for the change-point

score, we get a series of delay-vs-FPR pairs. When we plot

them in a smooth curve, the result is an AMOC curve. If a

change is not detected at all, a penalty is used as the delay,

which is set to 14 in our experiments. The scores for the first

140 points for each time series are ignored, since it is not

possible to give (accurate) scores at the beginning.

Figure 2 shows the average AMOC curves over all the

change-points on real data comparing all the methods. Notice

that our method dominates all the other methods almost

everywhere. With an FPR of 0.01, our method achieves a

mean delay of 3.32. With an FPR of 0.05, the mean delay is

0

5

10

0.00 0.25 0.50 0.75 1.00

FPR

d
e

la
y

method
RND

SCP

MW

Pois

DLM

Fig. 2: AMOC curves on real data.

6/5 5/6

3/2 2/3

2/1 1/2

0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00

0

5

10

0

5

10

0

5

10

FPR

d
e

la
y

method RND SCP MW Pois DLM

Fig. 3: AMOC curves on simulated data. The label on top of

each subgraph indicates the fold of the changes.

1.18. The means of the areas under the AMOC curves (AUC-

AMOC) are in the first row of Table I. The AUCs summarize

the AMOC curves by averaging over the FPR. Wilcoxon tests

show that our method is significantly better than the other

methods (**p ≤ 0.01).

Figure 3 shows the average AMOC curves on simulated

data. They are grouped by the experiment settings, that is

TABLE I: The Mean AUC-AMOC on Real and Simulated

Data.

data RND SCP MW Pois DLM

real 1.88 0.98 1.16 0.62 0.19 **

2/1 2.37 1.26 1.21 1.19 0.28 ***

3/2 1.97 1.86 1.36 1.88 0.68 **

6/5 2.01 2.24 1.74 2.26 1.88
1/2 2.36 1.22 1.74 1.19 0.50 ***

2/3 2.16 1.67 1.86 1.66 0.94 **

5/6 2.19 2.06 2.33 2.05 2.17

the fold of the simulated changes (the value of λ), which

is in the label on top of each subgraph. A general trend is

that as the change gets smaller, all the curves get closer to

the random baseline (RND). This reflects that the smaller the

change, the harder to detect it (in time). However, except when

the change is at the smallest setting, our method dominates all

the other methods almost everywhere by a noticeable margin.

Table I (row 2 to 7) shows the mean AUC-AMOC for different

folds of changes (first column). Wilcoxon tests show that our

method performs better than all the other methods significantly

(**p ≤ 0.01, ***p ≤ 0.001) in all cases except λ = 6/5, 5/6.

Even in those cases, it is close to the best performers, and

the difference is not significant (p > 0.1), while overall the

performance of all methods is close to random.

Acknowledgment: This research was supported by grants

R01-LM011966 and R01-GM088224 from the NIH. The con-

tent of this paper is solely the responsibility of the authors and

does not necessarily represent the official views of the NIH.

REFERENCES

[1] A. Wright, T.-T. T. Hickman, D. McEvoy, S. Aaron, A. Ai, J. M.
Andersen, S. Hussain, R. Ramoni, J. Fiskio, D. F. Sittig, and D. W. Bates,
“Analysis of clinical decision support system malfunctions: a case series
and survey,” Journal of the American Medical Informatics Association:

JAMIA, Mar. 2016.
[2] A. Sen and M. S. Srivastava, “On Tests for Detecting Change in Mean,”

The Annals of Statistics, vol. 3, no. 1, pp. 98–108, 1975.
[3] A. N. Pettitt, “A Non-Parametric Approach to the Change-Point Prob-

lem,” Journal of the Royal Statistical Society. Series C (Applied Statis-

tics), vol. 28, no. 2, pp. 126–135, 1979.
[4] J. Chen and A. K. Gupta, Parametric Statistical Change Point Analysis.

Boston: Birkhäuser Boston, 2012.
[5] S. Liu, A. Wright, and M. Hauskrecht, “Change-Point Detection Method

for Clinical Decision Support System Rule Monitoring,” 16th Confer-

ence on Artificial Intelligence in Medicine, vol. 10259, pp. 126–135,
2017.

[6] P. J. Harrison and C. F. Stevens, “Bayesian Forecasting,” Journal of the

Royal Statistical Society. Series B (Methodological), vol. 38, no. 3, pp.
205–247, 1976.

[7] R. E. Kalman, “A New Approach to Linear Filtering and Prediction
Problems,” Transactions of the ASME-Journal of Basic Engineering,
vol. 82, no. Series D, pp. 35–45, 1960.

[8] R. Killick and I. Eckley, “changepoint: An R Package for changepoint
analysis,” Lancaster University, pp. 1–15, 2013.

[9] G. Casella and R. Berger, Statistical Inference, ser. Duxbury advanced
series in statistics and decision sciences. Thomson Learning, 2002.

[10] M. S. Bartlett, “The Use of Transformations,” Biometrics, vol. 3, no. 1,
pp. 39–52, 1947.

[11] T. Fawcett and F. Provost, “Activity monitoring: Noticing interesting
changes in behavior,” in Proceedings of the fifth ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, vol. 1,
1999, pp. 53–62.

